DEVBRIDGE"
GROUP

Addressing the performance

(before someone else does it for you)

Justas Lauzadis

Special theory of relativity

Theme #1

Tracking

or why using a stop-watch for performance testing is not the worst thing
in the World

Changes cause changes

* Architectural/infrastructural changes
* Configurational/operational changes
e (Calculation logic changes
* Data pulling/design changes
* Traffic distribution changes

- due to new features

- due to design/UX improvements

- due to user learning

IT"S IMPOSSIBLE TO TRACK THEM ALL

High-level user-centric metrics

User Perception Of Performance Delays

0to 1Téms

0 to 100ms

100 to 300ms

300 to 1000ms

1000ms or more

10000ms or more

Users are exceptionally good at tracking motion, and they dislike it when animations aren't smooth.
They perceive animations as smooth so long as 60 new frames are rendered every second. That's
16ms per frame, including the time it takes for the browser to paint the new frame to the screen,
leaving an app about 10ms to produce a frame.

Respond to user actions within this time window and users feel like the result is immediate. Any
longer, and the connection between action and reaction is broken.

Users experience a slight perceptible delay.

Within this window, things feel part of a natural and continuous progression of tasks. For most users
on the web, loading pages or changing views represents a task.

Beyond 1000 milliseconds (1 second), users lose focus on the task they are performing.

Beyond 10000 milliseconds (10 seconds), users are frustrated and are likely to abandon tasks. They
may or may not come back later.

Following the RAIL model

* https://developers.google.com/web/fundamentals/performance/rail

Response

https://developers.google.com/web/fundamentals/performance/rail

Response

* User Timing API
(Performance.Mark, Performance.Measure)

* Optimistic Ul

Hello, world! 5[—?I'*| Hello, world! Sp.ril

Animation

° Do not block the flow

 Parallel animations are great

[w ﬂ Elements Console Sources MNetwork Performance Memory Application Secunty Audits EditThisCockie X
® C 8 + ¥ |frames-per-second appsp.. ¥ ¥ Screenshots [Memory i #
200 ms .m:nmsl I 600 s 200 ms 1000 ms 1200 ms 1400 ms 1600 ms 1800 ms 2000 ms 2200 1
CPU
.... L‘-—.—;;—;--.‘AJ_-__LL-_H_&._‘.JA_LLJ‘JHJ“‘A‘—-AA il el e i i e N i o e ol B o R e il e B B B e il e ol i e i i O ol R R e e e e e e e e
NET
IMIvmITmIimIEmiIisEiraTararararariarararariariarararararararmararErmaeEmaemi
Dms 415 ms 420 ms 425 ms 430 ms 435 ms A40 ms 445 ms 450 ms 455 ms 460 ms 465 ms 470 ms A75m ~
‘» Frames 16.2 ms : 16.9 ms : 16.4 ms : 17.7 ms

|:_'lr Main — httpswl‘rarres.-per-s@; 16.2 ms ~ &2 fps Frame

TN T N I

Email

email@domain.com

Password

Show

Idle

* Deliver first meaningful paint ASAP

* Maximize system’s idle time

I (i "u
B
L

* Run audits (Lighthouse, etc)

11 4 19 8:37 / 55:54

#LaisvesTV
+~JAV Zino — lietuviy programuotojai yra aukstesné klasé” — Aurimas Adomavicius

|| Laikykités ten

Load) APACHE

/ Meter”

N EUERSTEELG MTHROAM A resultsBSS. |t

Response time Percentage of errors
1mu‘ m- - - - - - - - - - - - . - - . - - . - .
80
Emﬂﬂ- =+
<
500 +
20
0- a
=T =2 8 - 2 2 -2 L8 08 8888 T T FFTF LB E B R EEEEEEEEEEEEE R EE
H ®w " ®w W =" = ®E ® H®H ®W ®W ® =® = ® ®H W H "W ® ®w = " Om Wm O ®m W W W ® ®m W ®E W ® " " @ W @ ® ®E H "' w =
- GvVerage : : }—Errurs
- Click for larger image

Response fime trends for build: "New DevOps - Test Performance BlueSkyQA #58"

URI Samples Average (ms) Min{ms) Median(ms) Line 30.0{ms) Max(ms) Http Code Errors (%) Average (Kl
Approve project 70*5 23573383 3720 qg7qq *096 40634 *<° 459710 500,200 | 18.571 9% “2942 %
Check filing count o +8 99g4 +776 515 0 1138 -3 2710 0 58535 +53624 200 | 73.529 o -3-138 %
Check the potential filing number 9572 +0 999 0 50 94 0 756 0 16619 0 404.200,400.500 52 507 05 0.0 %
Lreate a broker 2810 *9 448 *© 70 56 *2 503 *20 27046 0 400,500,200 | 50.534 % -0-182%
Create a class 2734 *8 202 * 110 g1+ 338 4 21673 ¢ 400,200 | 52.085 % -0-079 %
Create a client 2842 *3 930 +1° 18 0 114 0 465 *18 31563 0 200,400,500.Non HTTP response code: java.net. SocketException | 50.317 9 0.16%
Create a portiolio 2767 8 189 +4 110 890 283+ 23957 0 400,500,200 | 52.186 % 0-079%

I:J-l.r-'::l'ﬂ.l-': q r'll-l_'lq.r-h.ﬂ'lﬂl'”q. ™ Jd ™ -l-H I o N —f!' F |"I ol ™ —f!' ™ |"I em™od ™ d |"I dfi d &S ™™ Jd d i ™ ET o ce T Ir ™t oo e e oo o e e

= = . = - - -5 " - .l _ . - " g W ™™ S _|"I n?q'::':.-\.

Evidence of time relativity

* Existing performance test framework

- response times checked and compared every sprint
- average times measured using one user load

* Longer response times were registered by performance tests

APl request name Before (ms) | After (ms)| Change| Change %
APl Add Order Room ltems 1659 1873 -214] -12,90%
API Orders - Expand order by 3 days 3166 4056 -890| -28,11%
APl Orders - Decrease order by 3 days 3507 4591 -1084(-30,91%

Results after release to production

 Timeouts while editing relatively small orders
* Made impossible to use the system until hotfix introduced

 Had to revert functionality and investigate the causes

BE REAL(ISTIC)

M jpEgc - Active Threads Over Time = Overall Active Threads (x1 000) B jp@&aqgc - Response Times Over Time = Overall Response Times
J—

20 Use realistic data sets & workflows

/70 | |
* Follow data structure and volume of typical users 1

60 /

* Apply realistic load
50

e Use timeouts

40

30

0
ao:a0:00 o0:01:13 00:02:26 O0:03:40 00:04:53 000607 o0:07:20 o0:08:34
Elapsed time

00:09:47 oo:11:01

Randomize

Regular Expression Extractor
* Avoid server-side caching, Name: [Regular Expression Extractor

but respect browser cache C:;"pm:ts
() Main sample and sub-samples ® Main sample only Sub-
* Randomizing the order =2 Field to check
more realistic flows ® Body () Body (unescaped) () Body as aDocument O
Reference Name: Contractld
* Randomizing URLs = higher .| omadid
coverage Match No. (0 for Random): o
Default Value: ‘ -

Coverage

 Cover endpoints, parameters,
roles

e Simulate realistic traffic
distribution

 Test both APl and WEB layers

>

]
+0

All accounts »

Analytics Al Web Site Data ~

Oct 27

Primary Dimension: Page Page Title Other

Secondary dimension * | Sort Type: | Default -

Page
/dashboard e
/account/login &
/clients ™
faccount/login?expired=true i
/settlements e
/market-prices hEd
/shipments hEd
/contracts N
/clients/pending &

/account/login?ReturnUrl=/dashboard &

Pageviews

Oct -

Jo

12,306

% of Total: 100.00% (12,306)

2,092 (17.00%)

1,451 (11.79%)

826

235

485

475

472

420

219

163

(6.71%)

(4.35%)

(3.94%)

(3.86%)

(3.84%)

(3.41%)

(1.78%)

(1.32%)

r why there

Ask & Listen

 Ask early - as soon as you have test design in mind
* QOverhear conversations

e Ask about the fix — what was the cause?

Knowing the infrastructure is critical

 Explore every corner of your environment

e Sneak into other environments

Changes between environments might give understanding

Environment #1

Environment #2

OLD API INEW API

Label 60 users |60 users |DIFF

GET Contracts: all sales 4488 1948 -56.60%
GET Contracts: all sales by clientld 4140 1745 -57.85%
GET Contracts: all sales by clientld (all parameters) 4860 1785 -63.27%
GET Contracts: all sales by commodity 3042 1952 -35.83%
GET Contracts: all sales by date range 6852 1911 -72.11%
GET Contracts: all sales by status = Closed 6495 1953 -69.93%
GET Contracts: all sales by status = Historical 6655 1808 -72.83%
GET Contracts: all sales by status = Open 6707 1868 -72.15%
GET Contracts: all sales by status = Overdue 6671 1783 -73.27%
GET Contracts: all sales by status = Ready 6624 1850 -72.07%
GET Contracts: all sales by status = Settled 6729 1867 -72.25%
GET Contracts: all sales search 4448 1884 -57.64%
GET Contracts: all sales sorted asc by status 5289 1855 -64.93%
GET Contracts: all sales sorted desc by status 5318 1855 -65.12%
GET Contracts: overview 8011 2702 -66.27%
GET Contracts: unsigned 5049 1521 -69.88%

OLD APl |NEW API

Label 60 users |60 users |DIFF

GET Contracts: all sales 1288 1439 11.72%
GET Contracts: all sales by clientld 1333 1357 1.80%
GET Contracts: all sales by clientld (all parameters) 1217 1400 15.04%
GET Contracts: all sales by commodity 1443 1439 -0.28%
GET Contracts: all sales by date range 1194 1301 8.96%
GET Contracts: all sales by status = Closed 1215 1321 8.72%
GET Contracts: all sales by status = Historical 1229 1297 5.53%
GET Contracts: all sales by status = Open 1207 1319 9.28%
GET Contracts: all sales by status = Overdue 1278 1339 4.77%
GET Contracts: all sales by status = Ready 1258 1347 7.07%
GET Contracts: all sales by status = Settled 1306 1377 5.44%
GET Contracts: all sales search 1345 1321 -1.78%
GET Contracts: all sales sorted asc by status 1290 1588 23.10%
GET Contracts: all sales sorted desc by status 1261 1452 15.15%
GET Contracts: overview 1752 1919 9.53%
GET Contracts: unsigned 1286 1452 12.91%

Prevention

* Know the requirements

 Consider performance impact as early as possible
- initial workshop
- backlog refinements
- design is critical

e Run audits

* |nstruct the developers about the issue and how to test it

Story about a developer who tested with heavy data

Client users having a number of Account |1Ds (all products) @@ P
4000
. FProfile
o Account [Ds
v Al

2500

0002-00014-0002
2000

Mo that 0052-13444-0004

- 126065695591
1000 1415149143

20781172020
500

40221.P -

S T T S 14 12 4 E 4 4 5
1, 2] (2, 3] (3, 4] (4, 5] (5, B] (&, 7] (7, 8] (8, 9] (9, 10] (10, 11] =11

Advocating for tech debt

* Think of how to demo tech debt/performance improvements
 Think of how to demo newly introduced metrics

 Educate the team and the clients about the performance

Finally

Summa summarum

or what | was trying to prove

Summary

Performance should be tracked continuously
Test design is critical — be realistic
Learning from DEVs and infrastructure is key to improvement

TEs should take ownership of addressing the performance

Supporting tools

 Chrome developer tools

 User Timing API (or Stopwatch lib)
* Lighthouse (Chrome add-on)

* JMeter

* Jenkins

QUESTIONS?

DEVBRIDGE"
GROUP

The End

