
Addressing the performance
(before someone else does it for you)

Justas Laužadis



Time to talk

about response times –

how they change over time

and how we should respond



Back to 1905

Special theory of relativity



Tracking
or why using a stop-watch for performance testing is not the worst thing 
in the World

Theme #1



Changes cause changes

• Architectural/infrastructural changes
• Configurational/operational changes
• Calculation logic changes
• Data pulling/design changes
• Traffic distribution changes

- due to new features
- due to design/UX improvements
- due to user learning

…
IT’S IMPOSSIBLE TO TRACK THEM ALL



High-level user-centric metrics



Following the RAIL model

• https://developers.google.com/web/fundamentals/performance/rail

https://developers.google.com/web/fundamentals/performance/rail


Response

• User Timing API
(Performance.Mark, Performance.Measure)

• Optimistic UI 



Animation

• Do not block the flow

• Parallel animations are great



Idle

• Deliver first meaningful paint ASAP

• Maximize system’s idle time

• Run audits (Lighthouse, etc)



Load



Design

or why doing something somehow does not indicate professionalism

Theme #2



Evidence of time relativity

• Existing performance test framework
- response times checked and compared every sprint

- average times measured using one user load

• Longer response times were registered by performance tests



Results after release to production

• Timeouts while editing relatively small orders

• Made impossible to use the system until hotfix introduced

• Had to revert functionality and investigate the causes



BE REAL(ISTIC)



Use realistic data sets & workflows

• Follow data structure and volume of typical users

• Apply realistic load

• Use timeouts



Randomize

• Avoid server-side caching, 
but respect browser cache

• Randomizing the order →
more realistic flows

• Randomizing URLs → higher 
coverage



Coverage 

• Cover endpoints, parameters, 
roles

• Simulate realistic traffic 
distribution

• Test both API and WEB layers



Improve

or why there is a slim chance your current knowledge is not enough

Theme #3



Ask & Listen

• Ask early - as soon as you have test design in mind

• Overhear conversations

• Ask about the fix – what was the cause?



Knowing the infrastructure is critical 

• Explore every corner of your environment

• Sneak into other environments



Changes between environments might give understanding

Environment #1

Label
OLD API 
60 users

NEW API 
60 users DIFF

GET Contracts: all sales 1288 1439 11.72%
GET Contracts: all sales by clientId 1333 1357 1.80%
GET Contracts: all sales by clientId (all parameters) 1217 1400 15.04%
GET Contracts: all sales by commodity 1443 1439 -0.28%
GET Contracts: all sales by date range 1194 1301 8.96%
GET Contracts: all sales by status = Closed 1215 1321 8.72%
GET Contracts: all sales by status = Historical 1229 1297 5.53%
GET Contracts: all sales by status = Open 1207 1319 9.28%
GET Contracts: all sales by status = Overdue 1278 1339 4.77%
GET Contracts: all sales by status = Ready 1258 1347 7.07%
GET Contracts: all sales by status = Settled 1306 1377 5.44%
GET Contracts: all sales search 1345 1321 -1.78%
GET Contracts: all sales sorted asc by status 1290 1588 23.10%
GET Contracts: all sales sorted desc by status 1261 1452 15.15%
GET Contracts: overview 1752 1919 9.53%
GET Contracts: unsigned 1286 1452 12.91%

Label
OLD API 
60 users

NEW API 
60 users DIFF

GET Contracts: all sales 4488 1948 -56.60%
GET Contracts: all sales by clientId 4140 1745 -57.85%
GET Contracts: all sales by clientId (all parameters) 4860 1785 -63.27%
GET Contracts: all sales by commodity 3042 1952 -35.83%
GET Contracts: all sales by date range 6852 1911 -72.11%
GET Contracts: all sales by status = Closed 6495 1953 -69.93%
GET Contracts: all sales by status = Historical 6655 1808 -72.83%
GET Contracts: all sales by status = Open 6707 1868 -72.15%
GET Contracts: all sales by status = Overdue 6671 1783 -73.27%
GET Contracts: all sales by status = Ready 6624 1850 -72.07%
GET Contracts: all sales by status = Settled 6729 1867 -72.25%
GET Contracts: all sales search 4448 1884 -57.64%
GET Contracts: all sales sorted asc by status 5289 1855 -64.93%
GET Contracts: all sales sorted desc by status 5318 1855 -65.12%
GET Contracts: overview 8011 2702 -66.27%
GET Contracts: unsigned 5049 1521 -69.88%

Environment #2



Prevention

or how an early conversation can (sometimes) save the day

Theme #4



Prevention 

• Know the requirements

• Consider performance impact as early as possible
- initial workshop
- backlog refinements
- design is critical

• Run audits

• Instruct the developers about the issue and how to test it



Story about a developer who tested with heavy data



Advocating for tech debt

• Think of how to demo tech debt/performance improvements

• Think of how to demo newly introduced metrics

• Educate the team and the clients about the performance



Summa summarum

or what I was trying to prove

Finally



Summary

• Performance should be tracked continuously

• Test design is critical – be realistic

• Learning from DEVs and infrastructure is key to improvement

• TEs should take ownership of addressing the performance



Supporting tools

• Chrome developer tools
• User Timing API (or Stopwatch lib)
• Lighthouse (Chrome add-on)
• JMeter
• Jenkins



QUESTIONS?



The End


